Light-dependent transcriptional regulation of genes of biogeochemical interest in the diploid and haploid life cycle stages of Emiliania huxleyi.
نویسندگان
چکیده
The expression of genes of biogeochemical interest in calcifying and noncalcifying life stages of the coccolithophore Emiliania huxleyi was investigated. Transcripts potentially involved in calcification were tested through a light-dark cycle. These transcripts were more abundant in calcifying cells and were upregulated in the light. Their application as potential candidates for in situ biogeochemical proxies is also suggested.
منابع مشابه
Transcriptome Analyses Reveal Differential Gene Expression Patterns between the Life-cycle Stages of Emiliania Huxleyi (haptophyta) and Reflect Specialization to Different Ecological Niches(1).
Coccolithophores, especially the abundant, cosmopolitan species Emiliania huxleyi (Lohmann) W. W. Hay et H. P. Mohler, are one of the main driving forces of the oceanic carbonate pump and contribute significantly to global carbon cycling, due to their ability to calcify. A recent study indicates that termination of diploid blooms by viral infection induces life-cycle transition, and speculation...
متن کاملEffects of CO2 and their modulation by light in the life-cycle stages of the coccolithophore Emiliania huxleyi
The effects of ocean acidification on the life-cycle stages of the coccolithophore Emiliania huxleyi and their modulation by light were examined. Calcifying diploid and noncalcifying haploid cells (Roscoff culture collection strains 1216 and 1217) were acclimated to present-day and elevated CO2 partial pressures (PCO2; 38.5 vs. 101.3 Pa, i.e., 380 vs. 1000 matm) under low and high light (50 vs....
متن کاملInduction of phase variation events in the life cycle of the marine coccolithophorid Emiliania huxleyi.
Emiliania huxleyi is a unicellular marine alga that is considered to be the world's major producer of calcite. The life cycle of this alga is complex and is distinguished by its ability to synthesize exquisitely sculptured calcium carbonate cell coverings known as coccoliths. These structures have been targeted by materials scientists for applications relating to the chemistry of biomedical mat...
متن کاملOcean Acidification Affects Redox-Balance and Ion-Homeostasis in the Life-Cycle Stages of Emiliania huxleyi
Ocean Acidification (OA) has been shown to affect photosynthesis and calcification in the coccolithophore Emiliania huxleyi, a cosmopolitan calcifier that significantly contributes to the regulation of the biological carbon pumps. Its non-calcifying, haploid life-cycle stage was found to be relatively unaffected by OA with respect to biomass production. Deeper insights into physiological key pr...
متن کاملMorphological switch to a resistant subpopulation in response to viral infection in the bloom-forming coccolithophore Emiliania huxleyi
Recognizing the life cycle of an organism is key to understanding its biology and ecological impact. Emiliania huxleyi is a cosmopolitan marine microalga, which displays a poorly understood biphasic sexual life cycle comprised of a calcified diploid phase and a morphologically distinct biflagellate haploid phase. Diploid cells (2N) form large-scale blooms in the oceans, which are routinely term...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 75 10 شماره
صفحات -
تاریخ انتشار 2009